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Abstract: A master-oscillator power-amplifier with stimulated Brillouin 
scattering (SBS) beam cleanup or wavefront reversal typically incorporates 
a Faraday isolator to outcouple the Stokes light, limiting the power 
scalability. Volume Bragg gratings (VBGs) have the potential for scaling to 
higher powers. We report here the results of tests on a VBG designed to 
resolve wavelengths 0.060 nm apart, corresponding to the 16 GHz 
frequency shift for SBS backscattering at 1064 nm in fused silica. Such an 
element may also find use in between stages of fiber amplifiers, for 
blocking the Stokes wave. 
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1. Introduction 

A master-oscillator power-amplifier (MOPA) with stimulated Brillouin scattering (SBS) 
wavefront reversal [1] requires an optical element to couple the seed into the amplifier and 
outcouple the Stokes wave after the second, backward pass through the amplifier. SBS beam 
cleanup has a similar requirement [2]. In both cases, a Faraday isolator is typically used 
because the laser and Stokes waves are counterpropagating. Alternatively, a volume Bragg 
grating (VBG) can separate the two based on the wavelength shift, just as in a conventional 
diffraction grating. Photo-Thermo-Refractive (PTR) glass can be made with a loss below 103 
cm1, and a damage threshold above 104 W/cm2, therefore VBGs have the potential for 
scaling to higher powers, provided the area is large enough [3,4]. 

A 6.3 mm-thick VBG has previously been used as the input coupler for a low quantum 
defect Yb:KYW laser [5]. An 18 mm-thick VBG was used to narrow the linewidth of a diode 
bar to 20 pm (10 GHz) at 780 nm [6]. A 3 mm-thick VBG was used as an input coupler for a 
low quantum defect Er:Sc2O3 laser [7]. We have designed and fabricated a 12 mm-thick VBG 
to resolve the 0.06 nm (16 GHz) Stokes shift in fused silica at 1064 nm. Initial testing has 
been carried out with up to 27 W incident upon the VBG. 

In the wavefront reversal MOPA geometry, the Stokes beam is coupled out after the 
second pass amplification. A VBG could be used to reflect λL and transmit λS (Fig. 1). This 
geometry may have a more graceful failure mode in the event of a misalignment of the VBG, 
or an accidental shift in its resonance due to a change in temperature. 

 
Fig. 1. The preferred configuration using a VBG to outcouple in the wavefront reversal 
geometry. 

In the beam cleanup MOPA geometry, diffracting λL and transmitting λS would again have 
the more graceful failure mode, but for ease of alignment, transmitting λL is possible as well 
(Fig. 2). 

 

Fig. 2. A possible configuration to outcouple in the beam cleanup geometry. 

2. Experiment & calculations 

Our simulation with coupled wave theory shows that a 12 mm-thick grating should have 
sufficient resolution and an excellent contrast ratio. We then fabricated a sample and 
antireflection coated the 8 × 10 mm2 entrance and exit faces. Low-power reflection 
measurements made with a tunable diode laser [8] agree well with the simulation (Fig. 3). The 
full width at half maximum (FWHM) of the simulation is 0.063 nm; the experimental data has 
a FWHM of 0.057 nm. The spectral selectivity of reflecting Bragg gratings widens if the 
efficiency is increased too much, so the VBG was designed to have a peak reflectivity below 
0.95. Scattering losses are less than 1% and comparable to the residual reflectivity of the anti-
reflection coated entrance and exit faces. The asymmetry in the side lobes of the measured 
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curve could be due to a z-dependent background index change, or grating period distortion 
[9,10]. The polarization dependence of a volume holographic grating should be negligible 
when the angle between the incident and diffracted beams is <10° [11], and we have 
confirmed this experimentally. 
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Fig. 3. Calculated (line) and measured (circles) reflection of a 12 mm-thick reflection volume 
Bragg grating. 

For high-power testing, the VBG is mounted in a temperature-controlled holder with two 
rotation axes approximately normal to the grating vector. The source is a VBG-stabilized 
diode laser [12] amplified to 30 W with a single-mode, polarization-maintaining Yb-doped 
fiber amplifier [13]. The delivery fiber has a numerical aperture of 0.06; the output is 
collimated to a 3.0 mm diameter with a 25 mm focal length doublet [14]. A half-wave plate 
and Faraday isolator serve as a variable optical attenuator. To obtain the backward Stokes 
beam, light at λL is focused with a 30 mm focal length doublet into a 2.7 km graded-index 
fiber with a 50 µm core and numerical aperture of 0.2 [15]. Beam samplers at a small angle of 
incidence monitor incident, reflected, and transmitted powers. The VBG is aligned to 
maximize the Bragg reflection at an angle of 10°. 

3. Results 

High power measurements were taken in the geometry of Fig. 1 and of Fig. 2. Based on the 
low power measurements in Fig. 3, the figure of merit appropriate for Fig. 1, RLTS, could be 
as high as 0.96. The figure of merit appropriate for Fig. 2, TLRS, would be slightly less, 0.94, 
but easier to obtain experimentally because the short wavelength sidelobes in Fig. 3 are much 
smaller. 

Measured in the geometry of Fig. 2, the VBG transmittance at λL is 0.95 and the VBG 
reflectance at λS is 0.94 at an input power of 27 W (Fig. 4). The figure of merit of the VBG is 
TLRS = 0.89. The light reflected from the fiber shows the characteristic threshold behavior of 
SBS. The highest SBS reflectance we observe is 0.81. The threshold is 0.2 W incident upon 
the fiber. 
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Fig. 4. The VBG transmittance at λL (blue), VBG reflectance at λS (red), and SBS reflectance 
(black). 

We also tested the VBG in the geometry of Fig. 1 for input powers up to 7.5W. In this 
case, RL is 0.95, and TS is 0.88; both are nearly independent of input power. The figure of 
merit in this geometry is RLTS = 0.84. 

4. Discussion 

One issue is whether absorption will heat the VBG enough to shift the resonance. The index 
change and thermal expansion of photo-thermal refractive (PTR) glass are such that the 
resonant wavelength red shifts ~0.009 nm/°C at this spectral range. To investigate this we 
solved the 3D heat diffusion equation inside an 8×10×12 mm3 piece of glass with specific 
heat 0.84 J/gm°C and thermal conductivity 1 W/m°C. An absorption coefficient α = 103 cm1 
corresponds to an absorption of 0.12%. Taking the case of a 100 W beam, we assume that 
0.12 W is deposited uniformly in a cylinder 6 mm in diameter, centered in the sample, the two 
surfaces are in contact with a heat sink at 300 K, and there is no heat flow through the other 
four surfaces. The steady state results show a 1°C temperature difference between the beam 
axis and the 3 mm radius of the beam (Fig. 5, Fig. 6). This implies a 0.009 nm shift in 
resonance, which will produce only a small change in the transmission at λL and λS. 

 
Fig. 5. Cross section of the steady state temperature profile inside an 8 × 10 × 12 mm3 piece of 
PTR glass, with 0.12 W of heat deposited in a cylinder of the same length and 6 mm in 
diameter. 

#149284 - $15.00 USD Received 17 Jun 2011; accepted 4 Jul 2011; published 15 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  16888



  

0 1 2 3 4

300.0

300.5

301.0

301.5

302.0

 

 

T
e
m

p
e
ra

tu
re

 (
K

)

Distance from center (mm)
 

Fig. 6. Steady State VBG temperature vs distance along y from center of Fig. 5. 

The thermal time constant, on the order of 15 s, limits the rate at which the output power 
of the laser can be changed (Fig. 7). 
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Fig. 7. Transient VBG temperature on axis, same conditions as Fig. 5. 

4. Summary 

The scalability of a high average power wavefront-reversing MOPA was previously limited 
by the 1-kW power handling capability of the commercial Faraday isolators used for 
outcoupling. Beam cleanup MOPAs have a similar limitation. Compared to a Faraday 
isolator, a volume Bragg grating made from photothermal refractive glass appears to be a 
more scalable option for outcoupling the Stokes beam. We tested a VBG designed to separate 
wavelengths 0.060 nm apart, corresponding to the Stokes shift in fused silica at 1064 nm. In 
the geometry of Fig. 1, we measured a laser reflectance of 0.95 and a Stokes transmittance of 
0.88, at an incident power of 7 W. In the geometry of Fig. 2, we measured a laser 
transmittance of 0.95 and a Stokes reflectance of 0.94, at an incident power of 27 W. 
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